AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasAnIntroductiontoLatentFeatureModelJiguangLiCenterforAppliedArtificialIntelligenceOct28th,2021
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMotivationAssumewehaveNobservations{x1,···,xN},suchthateachxiRd.Infinitemixturemodel,weassumeeachobservationbelongstoasinglelatentclassci:LetthemixtureweightsbeθandsupposethereareKclasses,thedatalikelihoodisP(X|θ)=QNi=1PKk=1P(xi|ci=k)θkFigure:TwoClusterMixtureProblem:whatifeachobservationxicanbegeneratedbymorethanonelatentclass?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMotivationAssumewehaveNobservations{x1,···,xN},suchthateachxiRd.Infinitemixturemodel,weassumeeachobservationbelongstoasinglelatentclassci:LetthemixtureweightsbeθandsupposethereareKclasses,thedatalikelihoodisP(X|θ)=QNi=1PKk=1P(xi|ci=k)θkFigure:TwoClusterMixtureProblem:whatifeachobservationxicanbegeneratedbymorethanonelatentclass?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=ZV,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=ZV,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=ZV,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=ZV,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)P(X|F)P(F),whereF=ZV.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1πk)NmkUsually,weassumeπkBeta(r,s),suchthatP(πk)=πr1k(1πk)s1B(r,s)B(r,s)=R10πr1k(1πk)s1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X1)Γ(X1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:DistributionofZRecallwehavedefinedpriorforπkBeta(αK,1)andP(Z|π):P(Z)=KYk=1Z(NYi=1P(Zik|πk))P(πk)dπk=KYk=1ZNYi=1πmkk(1πk)NmkP(πk)dπk=KYk=1RQNi=1πmkk(1πNmkk)πα/K1kB(αK,1)dπk=KYk=1B(mk+α/K,Nmk+1)B(α/K,1)=KYk=1α/K·Γ(mk+α/K)Γ(Nmk+1)Γ(N+1+α/K)(1)
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:αcontrolsSparsityTheexpectationofthenumberofnon-zeroentriesinthematrixhasanupperboundthatisindependentofK!E[Xi,kZi,k]=E[TZ]=KE[TZ1]=KNXi=1Z10πkP(πk)dπk=KNα/k1+α/K=Nα1+α/KNα(2)
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasInfiniteFeatureModelMotivation:whatifwedon’tknowthenumberoflatentfeatures?CanbedefineadistributionofbinarymatrixZwhichhasNrowsbutinfinitecolumns?NaiveApproach:recallinthefinitecase,wehaveshownP(Z)=KYk=1α/K·Γ(mk+α/K)Γ(Nmk+1)Γ(N+1+α/K)WhatifweletK→∞?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasInfiniteFeatureModelMotivation:whatifwedon’tknowthenumberoflatentfeatures?CanbedefineadistributionofbinarymatrixZwhichhasNrowsbutinfinitecolumns?NaiveApproach:recallinthefinitecase,wehaveshownP(Z)=KYk=1α/K·Γ(mk+α/K)Γ(Nmk+1)Γ(N+1+α/K)WhatifweletK→∞?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasLet’smakeK→∞P([Z])=Xz[Z]P(Z)=K!Q2N1h=0kn!KYk=1α/K·Γ(mk+α/K)Γ(Nmk+1)Γ(N+1+α/K)(3)By2-pageofalgebraicmanipulations,mathematicianscanshowlimk→∞P([Z])=αK+Q2N1h=1Kh!eαHNK+Yk=1(Nmk)!(mk1)!N!,whereHN=PNj=11j
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasLet’smakeK→∞P([Z])=Xz[Z]P(Z)=K!Q2N1h=0kn!KYk=1α/K·Γ(mk+α/K)Γ(Nmk+1)Γ(N+1+α/K)(3)By2-pageofalgebraicmanipulations,mathematicianscanshowlimk→∞P([Z])=αK+Q2N1h=1Kh!eαHNK+Yk=1(Nmk)!(mk1)!N!,whereHN=PNj=11j
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθiM.αkRM:discriminationterm,dkRM:difficultyterm.P(Xik=1)=QMm=111+exp(αk(θidm))CurrentApproach:letckmBeta(2,2),P(Xik=1)=QMm=1(11+exp(αk(θidm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθiM.αkRM:discriminationterm,dkRM:difficultyterm.P(Xik=1)=QMm=111+exp(αk(θidm))CurrentApproach:letckmBeta(2,2),P(Xik=1)=QMm=1(11+exp(αk(θidm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθiM.αkRM:discriminationterm,dkRM:difficultyterm.P(Xik=1)=QMm=111+exp(αk(θidm))CurrentApproach:letckmBeta(2,2),P(Xik=1)=QMm=1(11+exp(αk(θidm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθiM.αkRM:discriminationterm,dkRM:difficultyterm.P(Xik=1)=QMm=111+exp(αk(θidm))CurrentApproach:letckmBeta(2,2),P(Xik=1)=QMm=1(11+exp(αk(θidm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθiM.αkRM:discriminationterm,dkRM:difficultyterm.P(Xik=1)=QMm=111+exp(αk(θidm))CurrentApproach:letckmBeta(2,2),P(Xik=1)=QMm=1(11+exp(αk(θidm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasReferenceThomasL.Griffiths,ZoubinGhahramani(2011).TheIndianBuffetProcess:AnIntroductionandReview.ZoubinGhahramani,ThomasL.Griffiths,PeterSollich(2006).Bayesiannonparametriclatentfeaturemodels