AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMotivationAssumewehaveNobservations{x1,···,xN},suchthateachxi∈Rd.Infinitemixturemodel,weassumeeachobservationbelongstoasinglelatentclassci:LetthemixtureweightsbeθandsupposethereareKclasses,thedatalikelihoodisP(X|θ)=QNi=1PKk=1P(xi|ci=k)θkFigure:TwoClusterMixtureProblem:whatifeachobservationxicanbegeneratedbymorethanonelatentclass?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMotivationAssumewehaveNobservations{x1,···,xN},suchthateachxi∈Rd.Infinitemixturemodel,weassumeeachobservationbelongstoasinglelatentclassci:LetthemixtureweightsbeθandsupposethereareKclasses,thedatalikelihoodisP(X|θ)=QNi=1PKk=1P(xi|ci=k)θkFigure:TwoClusterMixtureProblem:whatifeachobservationxicanbegeneratedbymorethanonelatentclass?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=Z⊗V,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=Z⊗V,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=Z⊗V,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:setupSupposethereareNobjectsandKfeatures,andthefeaturesaregeneratedindependently.Eachobjectihassomelatentfeaturevalues,letF=[fT1,···,fTn]TDataisgeneratedfromtheselatentfeatures:P(X|F)letZbeanNbyKmatrixsuchthatZik=1ifobjectipossessfeaturek.F=Z⊗V,whereVisthevalueofeachfeatureforeachobject.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:PriorforZInBayesianInference,weareinterestedintheposteriorP(F|X)∝P(X|F)P(F),whereF=Z⊗V.HowtospecifythepriorforZ?Assumeeachobjectpossessfeaturekwithprobabilityπk.P(Z|π)=QKk=1QNi=1P(Zik|πk)=QKk=1πmkk(1−πk)N−mkUsually,weassumeπk∼Beta(r,s),suchthatP(πk)=πr−1k(1−πk)s−1B(r,s)B(r,s)=R10πr−1k(1−πk)s−1dπk=Γ(r)Γ(s)Γ(r+s)r=αK,s=1=⇒B(r,s)=Γ(αK)Γ(1+αK)=Kα(Γ(X)=(X−1)Γ(X−1))
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:DistributionofZRecallwehavedefinedpriorforπk∼Beta(αK,1)andP(Z|π):P(Z)=KYk=1Z(NYi=1P(Zik|πk))P(πk)dπk=KYk=1ZNYi=1πmkk(1−πk)N−mkP(πk)dπk=KYk=1RQNi=1πmkk(1−πN−mkk)πα/K−1kB(αK,1)dπk=KYk=1B(mk+α/K,N−mk+1)B(α/K,1)=KYk=1α/K·Γ(mk+α/K)Γ(N−mk+1)Γ(N+1+α/K)(1)
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasFiniteFeatureModel:αcontrolsSparsityTheexpectationofthenumberofnon-zeroentriesinthematrixhasanupperboundthatisindependentofK!E[Xi,kZi,k]=E[TZ]=KE[TZ1]=KNXi=1Z10πkP(πk)dπk=KNα/k1+α/K=Nα1+α/K≤Nα(2)
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasInfiniteFeatureModelMotivation:whatifwedon’tknowthenumberoflatentfeatures?CanbedefineadistributionofbinarymatrixZwhichhasNrowsbutinfinitecolumns?NaiveApproach:recallinthefinitecase,wehaveshownP(Z)=KYk=1α/K·Γ(mk+α/K)Γ(N−mk+1)Γ(N+1+α/K)WhatifweletK→∞?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasInfiniteFeatureModelMotivation:whatifwedon’tknowthenumberoflatentfeatures?CanbedefineadistributionofbinarymatrixZwhichhasNrowsbutinfinitecolumns?NaiveApproach:recallinthefinitecase,wehaveshownP(Z)=KYk=1α/K·Γ(mk+α/K)Γ(N−mk+1)Γ(N+1+α/K)WhatifweletK→∞?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasEquivalenceClasseslof(·):mapbinarymatricestoleft-orderedbinarymatrices.lof(Z)isobtainedbyreorderingthecolumnsofthebinarymatrixZfromlefttorightbythemagnitudeofthebinarynumberexpressedbythecolumn:[Z]:setofbinarymatricesthatarelof-equivalenttoZFigure:Visualizationoflofoperation
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi−1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N−1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N−1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi−1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N−1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N−1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasMoreonEquivalenceClassesThehistoryoffeaturekatobjectiis(Z1,k,···,Zi−1,k)kh:numberoffeaturespossessingthehistoryhK0:numberoffeaturesforwhichmk=0K+=P2N−1h=1kh:numberoffeaturesforwhichmk>0,noteK=K0+K+Cardinalityof|[Z]|:|[Z]|=k!Q2N−1h=0kn!
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasLet’smakeK→∞P([Z])=Xz∈[Z]P(Z)=K!Q2N−1h=0kn!KYk=1α/K·Γ(mk+α/K)Γ(N−mk+1)Γ(N+1+α/K)(3)By2-pageofalgebraicmanipulations,mathematicianscanshowlimk→∞P([Z])=αK+Q2N−1h=1Kh!e−αHNK+Yk=1(N−mk)!(mk−1)!N!,whereHN=PNj=11j
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasLet’smakeK→∞P([Z])=Xz∈[Z]P(Z)=K!Q2N−1h=0kn!KYk=1α/K·Γ(mk+α/K)Γ(N−mk+1)Γ(N+1+α/K)(3)By2-pageofalgebraicmanipulations,mathematicianscanshowlimk→∞P([Z])=αK+Q2N−1h=1Kh!e−αHNK+Yk=1(N−mk)!(mk−1)!N!,whereHN=PNj=11j
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasIndianBuffetProcess(IBP)Figure:IndianBuffetProcessThefirstcustomerentersanIndianBuffetwithinfinitelymanydishes.ThefirstcustomersamplethefirstPoisson(α)dishes.Thenthcustomerhelpshimselftoeachdishwithprobabilitymkn,wheremkisthenumberoftimesdishkhasbeensampledThenthcustomertriespoisson(αn)dishes.
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθi∈M.αk∈RM:discriminationterm,dk∈RM:difficultyterm.P(Xik=1)=QMm=111+exp(−αk(θi−dm))CurrentApproach:letckm∼Beta(2,2),P(Xik=1)=QMm=1(11+exp(−αk(θi−dm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθi∈M.αk∈RM:discriminationterm,dk∈RM:difficultyterm.P(Xik=1)=QMm=111+exp(−αk(θi−dm))CurrentApproach:letckm∼Beta(2,2),P(Xik=1)=QMm=1(11+exp(−αk(θi−dm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθi∈M.αk∈RM:discriminationterm,dk∈RM:difficultyterm.P(Xik=1)=QMm=111+exp(−αk(θi−dm))CurrentApproach:letckm∼Beta(2,2),P(Xik=1)=QMm=1(11+exp(−αk(θi−dm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθi∈M.αk∈RM:discriminationterm,dk∈RM:difficultyterm.P(Xik=1)=QMm=111+exp(−αk(θi−dm))CurrentApproach:letckm∼Beta(2,2),P(Xik=1)=QMm=1(11+exp(−αk(θi−dm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeasSupposehaveitemresponsematrixXwithsizeNbyK,whereNisthenumberofstudents,Kisnumberofitems,andXikrepresentwhetherstudentianswerquestionkcorrectly.PartiallyCompensatoryMIRT:SupposethisexamtestsMlatentabilities,hencestudents’latenttraitsθi∈M.αk∈RM:discriminationterm,dk∈RM:difficultyterm.P(Xik=1)=QMm=111+exp(−αk(θi−dm))CurrentApproach:letckm∼Beta(2,2),P(Xik=1)=QMm=1(11+exp(−αk(θi−dm)))ckm
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasResearchIdeas(cont’d)Wedon’tknowthenumberoflatentabilities,canweapplyIDBpriortoeachcolumnoftheitemresponsematrixX?Advantages:Flexible,noneedforcross-validation.Allowthenumberoflatentfactorstogrowoveryears.Incorporateeducationexpertise?FixsomeentriesoflatentmatrixZ?ThelearnedZmatrixcanbetreatedasanaiverepresentationofthelatentstructureofknowledges.Drawbacks:High-dimensional?Requirestoomanyitems?WhataboutHierarchicalstructure?
AnIntroductiontoLatentFeatureModelJiguangLiMotivationsAFiniteFeatureModelInfiniteFeatureModelResearchIdeasReferenceThomasL.Griffiths,ZoubinGhahramani(2011).TheIndianBuffetProcess:AnIntroductionandReview.ZoubinGhahramani,ThomasL.Griffiths,PeterSollich(2006).Bayesiannonparametriclatentfeaturemodels